
Network Flow 1

Network flow problems are a very important type of linear programming prob-
lem. The idea is we have a set of objects (stores, blogs, nerves in a human
body), that can transmit something (goods, information, messages to and from
the brain) to other objects in the set. The connections between objects need not
be two-ways: just because object A transmits to object B does not mean B will
transmit to A. A good example of a network flow problem is the Transportation
Problem also found in the Coopr directory. While a simplified example, it is
essentially a problem of moving goods throughout the set of locations so that
demand can be satisfied at a few locations.

In that vein, we do a compareable example to begin. We are looking at a
company that produces grain. There are three mills in the area with a certain
supply, and these mills produce goods that they store in two warehouses until
they need to be shipped to the three factories with some value for their demand.
The warehouses have no supply or demand. To make matters more complicated,
two of the mills ship directly to the factories. Another factor to take into account
is that each route has a maximum amount that can be shipped along it, which
is a realistic condition (if being shipped by train, for example, only so many
trains can run in a period of time). Worse, a company is being contracted to
do the shipping, and they require a minimum amount along each route that we
must also take into account. Finally, it costs a certain amount per volume of
grain to ship along any route (to pay for space on trains, or gas for cars, for
example). All of this must be taken into account to create a realistic model that
will minimize the total cost for shipping grain from the mill to the factory.

The image below shows all the routes in this model, along with their associ-
ated costs.

Build the model

We begin this model as we always do

from coopr.pyomo import *

model = Model()

Now we must define our sets. In the transportation problem, we had a set
for the warehouses and a set for the stores. In this example, we’re going to
be more sophisticated: we’re going to just have one set for all the locations.
Additionally, we’re going to have one set that holds all of the different routes
between these locations. This construction will help later when creating the
constraints and is a more typical model for a network flow problem: we care
about the nodes and arcs, so it makes sense to make those the sets. The code
is a little different than what we’ve done before.

model.places = Set()
model.routes = Set(within=model.places*model.places)

1

Albany

Boise

 .4

Casper

 .6

Abq

 .3

Boston

 .5

Atlanta

.2

Chicago

 .125

.25

Charleston

 .3 .5 .2

Figure 1: A map of the transportation network. Albany, Albuquerque and At-
lanta are the factories, Boise and Boston are warehouses and Casper, Charleston
and Chicago are the locations of the stores.

While the definition for the set “places” should be familiar, how we defined
“routes” is a bit more foreign. By saying

within=model.places*model.places

we mean that routes is a subset of places crossed with itself. Thus, the set of
routes will be a set of tuples, and each part of these tuples will come from the
set of places. This is exactly what we want as each route is uniquely defined by
its starting and ending place, so if we have a route (A,B) that just means we
can ship grain from place A to place B. Note, though, that this does not mean
we can ship from B to A, that’s a different tuple, (B,A).

The parameters are fairly straightforward after this point. Each place has
an associated supply and demand (either or both of which could be 0), and each
route has a minimum and maximum amount that it can be used. Also, each
route has an associated cost with it. All of these are parameters over one set so
the implementation should be routine at this point.

model.supply = Param(model.places)
model.demand = Param(model.places)
model.cost = Param(model.routes)
model.minimum = Param(model.routes)
model.maximum = Param(model.routes)

Now to define our variables. We’re trying to figure out how much to ship
along any route, so creating an amount variable over the set of routes seems

2

logical. As in the previous examples, we restrict it to non-negative numbers as
shipping negative amounts of grain is impossible and illogical.

model.amount = Var(model.routes, within=NonNegativeReals)

In the transportation problem, we were lucky and (after we added a bit more
supply) the total supply was the same as the total demand. But what if we have
more supply than demand? It would be hard for a user to track down where that
extra supply is; they would need to carefully look through each warehouse and
store, calculating how much is coming in compared to the location’s supply and
demand to find where the extra supplies went. To make it simpler for the user
to find the extra amounts, we introduce another variable: excess. At the end,
when we solve the problem, the solution will also include an “excess” section
that tells us how much grain is left over at each location so we won’t lose track
of any of our supply, but instead easily and quickly know where it is. Note that
excess is a variable over the locations and shouldn’t be negative. From here, the
implementation is similar to the amount variable.

model.excess = Var(model.places, within=NonNegativeReals)

As in the diet problem and the transportation problem, our goal is to mini-
mize cost. To calculate the total cost, we just take the amount that will travel
along each route, multiply it with the cost to travel that route, and sum all of
these values together. To code it we input

def costRule(model):
return sum(model.cost[n]*model.amount[n] for n in model.routes)

model.costTotal = Objective(rule=costRule)

Once again, this is just taking the dot product of the cost and amount vectors.
Additionally, recall the being an objective means that Coopr will try to minimize
this value. Since total cost is our objective, Coopr will find the least expensive
way to ship our goods from the mills to the factories.

One of the main factors outlined above was that we ship a minimum amount
on each route, and at the same time we don’t exceed a maximum. We could
create two constraints, one that ensures we’re above the minimum and another
that checks if we’re below maximum, but we can easily construct this as one
constraint.

def loadRule(i,j, model):
return (model.minimum[i,j], model.amount[i,j],

model.maximum[i,j])

model.loadOnRoad = Constraint(model.routes, rule=loadRule)

3

The second line here indicates that the value of amount must be between
the minimum and maximum values (inclusive) allowed on that route. Also, but
putting routes as one of the arguments to the constraint we will cycle through
every possible route when doing this rule. Essentially, this is just the cost rule
for each individual route compressed into one constraint. Considering that this
one constraint also contains the minimum and maximum load rules, we see that
it is very, very useful.

Finally, we have our supply and demand rule. Like the previous constraint,
we can compress supply and demand into one rule. The basic idea is that the
supply, plus whatever flows in, must be greater than or equal to the demand
and whatever flows out. So, our mills will have an initial supply but nothing
new will flow in. Similarly, they have no demand, but a certain amount flowing
out. So for a mill, the supply demand rule requires

supply + 0 >= 0 + amount leaving mill

Which is a logical constraint. Similarly, for the factories, which have no initial
supply and no flow out, but do have a flow in and demand, the equation might
look like

0 + amount entering factory >= demand + 0

The warehouses are a bit more complicated, though, as they might have flow in
and out, along with an initial supply or demand (but not both—it can use its
supply to meet its own demand). Thus, this equation might be

supply + amount entering warehouse >= 0 + amount leaving warehouse

However, we have a further complication. We included the excess variable,
the amount left over at any given place, which isn’t described in the equations
above. Rather than inequalities, the above equations should actually be equal-
ities of the form.

supply + amount in = demand + amount out + amount left over

The implementation of this is a bit more complex than previous constraints.

def supplyDemandRule(nn, model):

amountIn = sum(model.amount[i,j] for (i,j) in model.routes
if j == nn)

amountOut = sum(model.amount[i,j] for (i,j) in model.routes
if i == nn)

input = amountIn + model.supply[nn]
output = amountOut + model.demand[nn] + model.excess[nn]

return input == output

model.supplyDemand = Constraint(model.places, rule=supplyDemandRule)

4

What we did was just construct a few additional variables; this wasn’t re-
quired but makes reading and understanding the code much, much simpler. The
variable “amountIn” looks at each route to find ones that end in this location,
then adds the amount on each of those routes together to determine how much
flows to each location. The “amountOut” variable fucntions similarly for the
flow out. Then we just create an “input” and “output” and ensure they’re
equal. As in some of the previous constraints, we feed the set of places into
the constraint as an arguement so it will index over that set, and thus this rule
functions for all the places in our network.

We have now finished creating the model. Save this as a .py file before
continuing.

Data Entry

As always, we begin by defining our sets. The set of places is straightforward
with nothing new or different to be considered.

set places := Albany Abq Atlanta Boise Boston Casper Charleston
Chicago;

However, the set of routes is a bit different. Since it was defined as a set
crossed with itself, it’s a set of tuples which must be taken into account. For-
tunately, the implementation isn’t very complex

set roues := (Albany,Casper) (Albany,Boise) (Abq,Boise)
(Abq,Boston) (Atlanta,Boston) (Atlanta,Chicago)
(Boise,Casper) (Boise, Charleston)
(Boston, Charleston) (Boston,Chicago);

We now need to input the supply and demand parameters for each location.
We use the same method for inputting parameters over one dimension that we
did before in both the diet problem and the transportation problem.

param supply :=
Albany 10000
Abq 7000
Atlanta 9000
Boise 0
Boston 3000
Casper 0
Charleston 0
Chicago 0;

param demand :=
Albany 0
Abq 0
Atlanta 0

5

Boise 2000
Boston 0
Casper 7000
Charleston 8000
Chicago 6000;

The last three parameters, minimum and maximum load and cost, are all
over the set of routes. Even though it is a set of tuples, inputting the information
is very similar to what was done with supply and demand. Note how to format
the tuples being used to index the parameters.

param minimum :=
Albany Casper 3000
Albany Boise 1000
Abq Boise 0
Abq Boston 2000
Atlanta Boston 1000
Atlanta Chicago 500
Boise Casper 1500
Boise Charleston 1000
Boston Charleston 2000
Boston Chicago 1000;

param maximum :=
Albany Casper 6000
Albany Boise 5000
Abq Boise 4000
Abq Boston 7000
Atlanta Boston 5000
Atlanta Chicago 4000
Boise Casper 6000
Boise Charleston 5000
Boston Charleston 7000
Boston Chicago 3000;

param cost :=
Albany Casper .6
Albany Boise .4
Abq Boise .3
Abq Boston .5
Atlanta Boston .2
Atlanta Chicago .125
Boise Casper .25
Boise Charleston .3
Boston Charleston .5
Boston Chicago .2;

6

Just put the beginning location, then a space, then the end location with the
associated value afterwards.

We’ve now finished inputting the data, so all that’s left is to run the model.
Make sure to save this information as a .dat file.

Solution

We use Pyomo to generate the results. Below is a simplified version of Pyomo’s
output for brevity and ease of reading.

Objective: 11575

Variable:

Amount:
Boise Casper 1500
Albany Casper 5500
Abq Boston 2000
Boise Charleston 1500
Atlanta Boston 3500
Albany Boise 1000
Atlanta Chicago 4000
Boston Chicago 2000
Boston Charleston 6500
Abq Boise 4000

Excess:
Albany 3500
Abq 1000
Atlanta 1500

There are a few key pieces of information to highlight here. First, we see
that our optimal cost is $11, 575, along with the amounts to ship along each
route. For example, we should ship 4000 units from Albuquerque to Boise.
Additionally, at the bottom we see the values for the “excess” variable: Albany
will have 3500 units, Albuquerque will have 1000 and Atlanta will have 1500. If
these values are summed, it is 6000, the exact difference between the total supply
and total demand at the start of our model, which is exactly how it should be.
Note also that the excess was just at our initial locations; that doesn’t have to
be the case. Depending on how the model was set up, other places may have
had an excess—for example if the minimum amount shipped from Albuquerque
to Boston was increased, it might shift the excess to Boston.

This was a simple network flow problem. In the next example, we’ll investi-
gate a different kind of network flow problem.

7

